Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit
نویسندگان
چکیده
In order to establish cells and organisms with predictable properties, synthetic biology makes use of controllable, synthetic genetic devices. These devices are used to replace or to interfere with natural pathways. Alternatively, they may be interlinked with endogenous pathways to create artificial networks of higher complexity. While these approaches have been already successful in prokaryotes and lower eukaryotes, the implementation of such synthetic cassettes in mammalian systems and even animals is still a major obstacle. This is mainly due to the lack of methods that reliably and efficiently transduce synthetic modules without compromising their regulation properties. To pave the way for implementation of synthetic regulation modules in mammalian systems we utilized lentiviral transduction of synthetic modules. A synthetic positive feedback loop, based on the Tetracycline regulation system was implemented in a lentiviral vector system and stably integrated in mammalian cells. This gene regulation circuit yields a bimodal expression response. Based on experimental data a mathematical model based on stochasticity was developed which matched and described the experimental findings. Modelling predicted a hysteretic expression response which was verified experimentally. Thereby supporting the idea that the system is driven by stochasticity. The results presented here highlight that the combination of three independent tools/methodologies facilitate the reliable installation of synthetic gene circuits with predictable expression characteristics in mammalian cells and organisms.
منابع مشابه
Synthetic Biology Based on Genetic Logic Circuit, Using the Expression of Drug Resistance, BCRP Pump in MCF-7 Cancer Cell Line
Biological circuits are developed as biological parts within a cell to carry out logical functions resembling those studied in electronics circuits. These circuits can be performed as a method to vary cellular functions, to develop cellular responses to environmental conditions, or to regulate cellular developments. This research explored the possibility of synthetic biology based on the geneti...
متن کاملSynthetic Biology Based on Genetic Logic Circuit, Using the Expression of Drug Resistance, BCRP Pump in MCF-7 Cancer Cell Line
Biological circuits are developed as biological parts within a cell to carry out logical functions resembling those studied in electronics circuits. These circuits can be performed as a method to vary cellular functions, to develop cellular responses to environmental conditions, or to regulate cellular developments. This research explored the possibility of synthetic biology based on the geneti...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملConstruction of a Mammalian IRES-based Expression Vector to Amplify a Bispecific Antibody; Blinatumomab
Blinatumomab, the bispecific T cell engager, has been demonstrated as the most successful BsAb to date. Throughout the past decade, vector design has great importance for the expression of monoclonal antibody in Chinese hamster ovary (CHO) cells. It has been indicated that expression plasmids based on the elongation factor-1 alpha (EF-1 alpha) gene and DHFR selection marker can be highly effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008